Algebra 2

4-04 Find Rational Zeros of Polynomial Functions (4.5)

The Remainder Theorem

- If a polynomial $f(x)$ is \qquad by $x-k$, then the remainder is the value \qquad .

Use the Remainder Theorem to Evaluate a Polynomial

- To evaluate polynomial $f(x)$ at $x=k$ using the Remainder Theorem,

1. Use \qquad division to divide the polynomial by $x-k$.
2. The \qquad is the value $f(k)$.
Use the remainder theorem to evaluate $f(x)=3 x^{4}-5 x^{3}+x-14$ at $x=2$.

The Factor Theorem

- According to the Factor Theorem, k is a zero of $f(x)$ if and only if $(x-k)$ is a \qquad of $f(x)$.

Use the Factor Theorem to Solve a Polynomial Equation

1. Use \qquad division to divide the polynomial by the given \qquad , $(x-k)$.
2. \qquad that the remainder is 0 .
3. If the quotient is \qquad a quadratic, repeat steps 1 and 2 with \qquad factor using the quotient as the polynomial.
4. If the quotient \qquad a quadratic, \qquad the quadratic quotient if possible.
5. Set each factor equal to \qquad and solve for x.
Show that $x-2$ is a factor of $x^{3}+7 x^{2}+2 x-40$. Then find the remaining factors.

Show that $x+2$ and $x-1$ are factors of $x^{4}-4 x^{3}-3 x^{2}+14 x-8$. Then find the remaining factors.

